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Ginzburg Landau Theory of Superconductors

The Ginzburg-Landau (GL) theory of superconductivity is one of the most use-
ful tools for doing quantitative calculations.

BCS theory applies to homogeneous uniform superconductors, and provides
insights into the microscopic pairing mechanism. However many problems of in-
terest involve inhomogeneities such as interfaces, impurities, magnetic vortices,
etc. For this we need to generalize BCS theory. One can write the creation
and annihilation operators in terms of real-space eigenfunctions, rather than
momentum space eigenfunctions. An operator that annihilates a particle at lo-
cation −→r and spin ↑ is,
Ψ(−→r , ↑) =

∑
n

[
γn,↑un(−→r )− γ+n,↓v∗n(−→r )

]
, where n labels the real space eigen-

functions. Note that the u's and v's are now position dependent. This will
lead to the de�nition of a position-dependent gap function, determined self-
consistently.

Ginzburg-Landau (GL) theory can be derived from this real-space general-
ized version of BCS. However we will follow the phenomenological de�nition of
the theory.

We introduce a spatially dependent complex order parameter ψ(−→r ) which
has the interpretation that the magnitude squared describes the local super�uid
density, |ψ(−→r )|2 = ns(

−→r ).
This order parameter shares many of the properties of the macroscopic quantum
wavefunction that we discussed early in the semester as being responsible for
the MQ properties such as �ux quantization and the Josephson e�ect. It is not
useful to think of the GL order parameter as a local version of the spectral gap
in quasiparticle excitations.

GL proceeds by making the following postulate: ψ is "small" and varies
"slowly" in space. In this case the free energy di�erence between the supercon-
ducting and normal states can be expanded in powers of the order parameter
and its gradient as,
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fs = fn+α |ψ|2+ β
2 |ψ|

4
+ 1

2m∗

∣∣∣(~
i

−→
5 − e∗

−→
A
)
ψ
∣∣∣2+ µ0H

2

2 , where f is the free en-

ergy density (measured in J/m3) and
−→
A is the total vector potential due to both

external and self-generated �elds. This expansion is expected to converge near
the transition temperature where the order parameter magnitude continuously
goes to zero.

Ginzburg Landau Temperature Dependence

In the absence of gradients and �elds, the simple GL model reduces to,
fs = fn +α |ψ|2 + β

2 |ψ|
4
. To keep the order parameter �nite requires that β be

positive. For α positive, the minimum free energy di�erence occurs for ψ = 0.
If α changes sign, there is a minimum for ψ = ψ∞ such that |ψ∞|2 = −α/β.
The free energy density of the superconductor is lower than that of the normal

metal by an amount fs−fn = − 1
2
α2

β . We treat this as equivalent to a magnetic
�eld energy density associated with the thermodynamic critical �eld Hc as,

fs − fn = − 1
2
α2

β = −µ0H
2
c

2 , so that H2
c = α2

µ0β
.

It is clear that α must change sign at Tc, hence we can write α(t) = α′(t−1)
where t ≡ T/Tc is the reduced temperature and α′ is positive. Putting this into
the de�nition of ψ∞ yields the temperature dependence of the order parameter
near Tc:
ψ2
∞ ∝ ns ∝ (1− t), so that the order parameter falls continuously to zero at Tc

linearly in temperature.
Ginzburg Landau Gradient Term

The gradient term is

G = 1
2m∗

∣∣∣(~
i

−→
5 − e∗

−→
A
)
ψ
∣∣∣2.

Substituting ψ = |ψ(−→r )| eiφ(−→r ) and simplifying yields,

G = 1
2m∗

[
~2(5|ψ|)2 + (~

−→
5φ− e∗

−→
A )2|ψ|2

]
.

This shows that creating a gradient in the magnitude of the order parameter
costs energy. Likewise creating a strong twist in the phase is also energetically
costly. Recalling our earlier results for the MQWF, we can write the second
term as 1

2m
∗v2s |ψ|2 which can be interpreted as the kinetic energy density of the

super�uid �ow, created by a twist in phase and vector potential.

0.1 GL E�ective Penetration Depth

We now de�ne an e�ective magnetic penetration depth as
λ2eff ≡ m∗

µ0|ψ|2(e∗)2 . This di�ers from the London penetration depth in the sub-

stitution of the e�ective super�uid density |ψ|2 for the total electron density n.
As such, the e�ective screening length is often longer than the London penetra-
tion depth, as we shall see later.

We can now write the two phenomenological GL parameters in terms of
measurable quantities as follows,
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α(T ) = − 2µ2
0e

2

m H2
c (T )λ2eff (T ),

β(T ) =
4µ3

0e
4

m2 H2
c (T )λ4eff (T ).

Using the empirical temperature dependences Hc ∝ (1 − t2) and λ−2eff ∝
(1− t4) yields the following temperature dependences near Tc:
|ψ|2 ∝ 1− t,
α ∝ −H2

cλ
2
eff ∝ −(1− t),

β ∝ H2
cλ

4
eff ∝ 1

(1+t2)2 ∝ constant near Tc.

0.2 GL Di�erential Equation

The total free energy di�erence∫
(fs − fn)d3r

is a functional of the GL order parameter function ψ(r) and the total vector
potential A(r). By demanding that the free energy di�erence is a minimum
for a �rst order functional variation of ψ(r), one can derive the GL di�erential
equation:

αψ + β|ψ|2ψ + 1
2m∗

(
~
i

−→
5 − e∗

−→
A
)2
ψ = 0.

Similarly for a functional variation of the vector potential one �nds,
−→
J = e∗

m∗ |ψ|2
(
~
−→
5θ − e∗

−→
A
)

= e∗|ψ|2−→v s.

One can view the GL di�erential equation as a nonlinear Schrodinger equa-
tion with a potential of the form V = β|ψ|2 and eigenvalue −α. Since β > 0
the potential is repulsive, tending to spread out the distribution of ψ(−→r ).

0.3 "Derivation" of GL Theory

Starting from the BCS self-consistent gap equation one can expand the integral
to third order in the limit of small gap (near Tc). Generalizing the homogeneous
BCS gap ∆(T ) to a spatially-dependent "gap function" ∆(−→r ) and including the
possibility of a gradient in the gap, as well as magnetic �elds, yields this equa-
tion (Ketterson and Song, section 45);[(

1− T
Tc

)
+ 1

6

(
~vF
πkBTc

)2
7
8ζ(3)χ(ρ)

(−→
∇ − 2ie

~c
−→
A
)2
− 7ζ(3))

8(πkBTc)2
|∆(−→r )|2

]
∆(−→r ) =

0.

This is equivalent to the GL di�erential equation with the assignments:

ψ(−→r ) =
√

7ζ(3)n
8(πkBTc)2

∆(−→r )

α = − 6π2(kBTc)
2

7ζ(3)εF

(
1− T

Tc

)
β = 12π2(kBTc)

2

7ζ(3)εFn
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where n is the total electron density and εF is the Fermi energy.

The gap function ∆(−→r ) is no longer the gap in the excitation spectrum of
the superconductor. Instead it can be thought of as a local internal �eld tending
to produce Cooper pairing of electrons. It is also a complex function, in general.
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