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Ginzburg Landau Theory of Superconductors
The Ginzburg-Landau (GL) theory of superconductivity is one of the most use-
ful tools for doing quantitative calculations.

BCS theory applies to homogeneous uniform superconductors, and provides

insights into the microscopic pairing mechanism. However many problems of in-
terest involve inhomogeneities such as interfaces, impurities, magnetic vortices,
etc. For this we need to generalize BCS theory. One can write the creation
and annihilation operators in terms of real-space eigenfunctions, rather than
momentum space eigenfunctions. An operator that annihilates a particle at lo-
cation 7 and spin 71 is,
(T =3, {VH’TUH(?) - fy;w:;(?)}, where n labels the real space eigen-
functions. Note that the u’s and v’s are now position dependent. This will
lead to the definition of a position-dependent gap function, determined self-
consistently.

Ginzburg-Landau (GL) theory can be derived from this real-space general-
ized version of BCS. However we will follow the phenomenological definition of
the theory.

We introduce a spatially dependent complex order parameter 1/)(7) which

has the interpretation that the magnitude squared describes the local superfluid
density, (7| = n (7).
This order parameter shares many of the properties of the macroscopic quantum
wavefunction that we discussed early in the semester as being responsible for
the MQ properties such as flux quantization and the Josephson effect. It is not
useful to think of the GL order parameter as a local version of the spectral gap
in quasiparticle excitations.

GL proceeds by making the following postulate: 1 is "small" and varies
"slowly" in space. In this case the free energy difference between the supercon-
ducting and normal states can be expanded in powers of the order parameter
and its gradient as,



fs = fn+04|¢|2+§ |¢|4+ 21—}1*

ergy density (measured in J/m?) and A is the total vector potential due to both
external and self-generated fields. This expansion is expected to converge near
the transition temperature where the order parameter magnitude continuously
goes to zero.
Ginzburg Landau Temperature Dependence

In the absence of gradients and fields, the simple GL model reduces to,
fs=fnta |1/)|2 + g |w|4. To keep the order parameter finite requires that 3 be
positive. For a positive, the minimum free energy difference occurs for 1) = 0.
If o changes sign, there is a minimum for ¢ = v such that |1s|> = —/.
The free energy density of the superconductor is lower than that of the normal
metal by an amount f; — f, = —%“—2. We treat this as equivalent to a magnetic

field energy density associated with the thermodynamic critical field H,. as,
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It is clear that o must change sign at T, hence we can write a(t) = o/ (t — 1)
where ¢t = T'/T, is the reduced temperature and o’ is positive. Putting this into
the definition of ¥, yields the temperature dependence of the order parameter
near 1:

2 o ng o< (1 —t), so that the order parameter falls continuously to zero at T,
linearly in temperature.

Ginzburg Landau Gradient Term
The gradient term is
G =g (%g - e*Z) (@
Substituting 1 = |(7)| (") and simplifying yields,

G = 5k [B (V1) + (6 — e AP P

This shows that creating a gradient in the magnitude of the order parameter
costs energy. Likewise creating a strong twist in the phase is also energetically
costly. Recalling our earlier results for the MQWF, we can write the second
term as %m*vfw)\z which can be interpreted as the kinetic energy density of the
superfluid flow, created by a twist in phase and vector potential.
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0.1 GL Effective Penetration Depth

We now define an effective magnetic penetration depth as

A2 = W This differs from the London penetration depth in the sub-
stitution of the effective superfluid density |t/|? for the total electron density n.
As such, the effective screening length is often longer than the London penetra-
tion depth, as we shall see later.

We can now write the two phenomenological GL parameters in terms of
measurable quantities as follows,



oT) = — 2495 H2(T)A2, (T),
B(T) = M8 H2(T)A (T

Using the empirical temperature dependences H. x (1 — t?) and )\;fzf o
(1 — t*) yields the following temperature dependences near 7:
|’(/)|2 x1- ta
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0.2 GL Differential Equation

The total free energy difference

[(fs = fu)dor

is a functional of the GL order parameter function v (r) and the total vector
potential A(r). By demanding that the free energy difference is a minimum
for a first order functional variation of ¢ (), one can derive the GL differential
equation:
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Similarly for a functional variation of the vector potential one finds,
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One can view the GL differential equation as a nonlinear Schrodinger equa-
tion with a potential of the form V = S||? and eigenvalue —a. Since 3 > 0
the potential is repulsive, tending to spread out the distribution of ¢(7)

0.3 "Derivation" of GL Theory

Starting from the BCS self-consistent gap equation one can expand the integral
to third order in the limit of small gap (near T.). Generalizing the homogeneous
BCS gap A(T) to a spatially-dependent "gap function" A(?) and including the
possibility of a gradient in the gap, as well as magnetic fields, yields this equa-
tion (Ketterson and Song, section 45);

{(1 _ Tl) +1 (ﬁZ’;FTC)z Z¢B3)x(p) (? - %Z)Q ~ Sty AT | AT) =
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This is equivalent to the GL differential equation with the assignments:

W(T) =\ s A(T)
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where n is the total electron density and er is the Fermi energy.

The gap function A(7) is no longer the gap in the excitation spectrum of
the superconductor. Instead it can be thought of as a local internal field tending
to produce Cooper pairing of electrons. It is also a complex function, in general.



